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Abstract—We consider a quasi-stationary Markov chain as a
model for a decode and forward wireless multi-hop cooperative
transmission system that forms successive Opportunistic Large
Arrays (OLAs). This paper treats a linear network topology,
where the nodes form a one-dimensional horizontal grid with
equal spacing. In this OLA approach, all nodes are intended to
decode and relay. Therefore, the method has potential application
as a high-reliability and low-latency approach for broadcasting
in a line-shaped network, or unicasting along a pre-designated
route. We derive the transition probability matrix of the Markov
chain based on the hypoexponential distribution of the received
power at a given time instant assuming that all the nodes have
equal transmit power and the channel has Rayleigh fading and
path loss with an arbitrary exponent. The state is represented
as a ternary word, which indicates which nodes have decoded in
the present hop, in a previous hop, or have not yet decoded. The
Perron-Frobenius eigenvalue and the corresponding eigenvector
of the sub-stochastic matrix indicates the signal-to-noise ratio
(SNR) margin that enables a given hop distance.

Index Terms—Stochastic modeling, quasi-stationary Markov
chains, wireless network, cooperative transmission.

I. INTRODUCTION

IRELESS multi-hop communications, where radios

forward the packets of other radios, has a wide variety
of applications, not only in the cellular and sensor networking
regimes, but in technologies like wireless computer network-
ing and mobile computing. One promising, fast, and low-
overhead wireless transmission technique is the Opportunistic
Large Array (OLA) [1], in which all radios that decode a mes-
sage relay the message together, very shortly after reception,
without coordination with other relays. Slot and symbol time
synchronization can be achieved based on a packet preamble
that all cooperators receive [2], or from GPS or a network
time synchronization protocol [3]. For OFDM, carrier and
sample frequency synchronization can also be derived from
a packet preamble that all cooperators receive [4]. Because
only a minimal amount of inter-node coordination is needed,
OLAs are particularly well suited for mobile networks, such
as large groups of people with smart phones or swarms of
robots. Especially when paired with a transmission threshold,
OLA broadcasting is an energy-efficient candidate for large
dense wireless sensor networks [5].
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In this paper, we model a special case of the decode and
forward (DF) OLA network, where the nodes are uniformly
spaced along a line. This topology can be considered a precur-
sor to a strip shaped network or a uni-cast cooperative route
for the finite density case. Typical examples include structural
health monitoring and sensors employed in hallways of build-
ings in a linear fashion. The topology would also be consistent
with a plastic communication cable, in which small wireless
relays are embedded along a cable made of a non-conducting
material [6]. Such “plastic wires” might find applications in
areas of high electric fields. The wireless channel is modeled
with path loss and flat Rayleigh fading. All the nodes that can
decode the source packet correctly, and that have not relayed
the packet before, relay the packet concurrently in orthogonal
channels, thereby providing transmit diversity [2]. We do not
address how the orthogonal channels are assigned, other than
to suggest that in a line network, they can be assigned as
a repeating sequence, e.g., ABCDABCD..., such that the
sequence ABCD is at least as long as the hop distance. Then,
all the nodes that can decode that OLA transmission will
relay in the next hop, and this process proceeds until it fails.
Also, we assume that the distance between the source and the
destination is long enough that the transmission reaches a kind
of steady state. Specifically, we assume that the conditional
probability that the kth node in a level decodes, given that
the previous level had at least one node transmitting, is
the same for each level. This allows us to apply the well-
established theory of quasi-stationary discrete time Markov
chains with an absorbing state [14]. The absorbing state is
defined to be when all the nodes in one hop cannot decode
the message, and the transmissions stop propagating. Once
we have the quasi-stationary distribution, we can determine
network performance, such as packet delivery ratio and latency
over a given distance as a function of system parameters such
as transmit power, inter-node distance and path loss exponent.

Many authors have studied multi-hop networks with co-
operative transmission (CT). For the purpose of this paper,
we will classify these previous works into non-OLA based
([71-[9] and references therein) and OLA based. The OLA
is distinguished from the other forms of CT mainly in the
way the relays are selected. In an OLA, selection is achieved
without any kind of cluster head, leader, or anchor node.
Nodes autonomously decide to relay if they can decode the
packet, and if they have not relayed that packet before. In
other words, the radios that will participate in the OLA of
the nth hop, for instance, cannot be determined in advance.
Among the OLA based works, the authors in [1], [10]-[12],
studied large dense networks, using the continuum assumption.
Under this assumption, the number of nodes goes to infinity
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while the power per unit area is kept fixed. These papers
derived conditions under which broadcasting over an infinite
disk or strip is guaranteed. In contrast, in this paper, we
obtain closed-form theoretical results without the continuum
assumption, by deploying a simple one-dimensional network
where the nodes are uniformly spaced on a grid. By applying
the quasi-stationary Markov chain analysis, we show that
there is no condition guaranteeing infinite propagation of
OLAs. There is only a probability of successfully delivering
a packet over a given distance. Although our analysis focuses
on the delivery of only a single packet, in many applications,
numerous packets, composing for example a video file, could
be injected into such a cooperative route, one every few time
slots, similarly to how they are injected in a non-cooperative
route. In this paper, we do not address important network
layer metrics, such as throughput. However, the interested
reader may wish to see the first results of an OLA-based
uni-cast protocol compared to ad hoc on-demand distance
vector (AODV) routing on software defined radios in an indoor
network [13].

The rest of the paper is organized as follows. In the
next section, we define the network parameters. Section III
proposes a model of the network via discrete time Markov
chains (DTMC) and obtains a quasi-stationary distribution of
this chain. In Section IV, we derive the transition probability
matrix for the proposed model and we propose an iterative
algorithm for optimizing the membership function in Section
V. We will then validate the analytical results with those of
numerical simulations in Section VI. The paper then concludes
with certain recommendations of the future work in Section
VIIL

II. SYSTEM DESCRIPTION

In this section, we describe our model for the signal-to-noise
ratio (SNR) in each receiver, and state our other assumptions.
Consider a line of nodes where adjacent nodes are a distance
d apart from one another, as shown in Figure 1. We assume
that the nodes transmit synchronously in OLAs or levels, and
that a hop occurs when nodes in one level transmit a message
and at least one node is able to decode the message for the
first time. Correct decoding is assumed when a node’s received
SNR at the output of the diversity-combiner, from the previous
level only, is greater than or equal to a modulation-dependent
threshold, 7. Exactly one time slot later, all the nodes that
just decoded the message relay the message. Thus, this type
of cooperative transmission is similar to selection relaying in
[7]. Once a node has relayed a message, it will not relay
that message again. Let p,,(m) be the membership probability
that the mth node transmits in the nth level, given that at
least one node transmitted in the (n — 1)th level. Also let M
be at least the width of the region of support of p,(m). In
other words, there exists some M such that p,,(m) > 0 for
My <m < Mo+ M —1 and p,(m) = 0 otherwise. As we
will show later, the quasi-stationary property implies that there
exists a hop distance, hg, such that p,_1(m — hg) = pp(m).
Hence hg can be considered as a shift to the window of size
M. A sample outcome of the transmissions is shown in Figure
1 where the window size, M, is 5 and hop distance or the shift
in window, hg, is 2. The nodes 1, 2, and 4 are able to decode

2307
n+1
n-1 | | n+3
| | q
«—
o [ N NONON7N7 N7 NONEE
1 2 3 4 5 6 7 8 9 10 11 12
| |
n-2 | | n+2

Fig. 1. A sample outcome of the transmission system with the overlapping
windows; M =5 and hg = 2.

the message and become part of level n — 2. These nodes will
relay the message in the next time slot and only the nodes
in level » — 1 may decode that message. Since node 4 has
already participated in level n — 2, so it cannot be part of any
other level including n — 1. Thus the candidate nodes are 3,
5, 6, and 7, out of which nodes 3, 5, and 6 become DF nodes
in level n — 1 and this process continues.

We assume that all the nodes transmit with the same
transmit power P;. A node receives superimposed copies of
the message signal from the nodes that decoded the mes-
sage correctly in the previous level, over orthogonal fading
channels using equal gain combining (EGC). Let us define
N, = {1,2,...,k,}, where k,, is the cardinality of the set
N,, such that sup,, k, = M, to be the set of indices of those
nodes that decoded the signal perfectly at the time instant
(or hop) n. For example, from Figure 1, N, = {3,4} and
Np+1 = {3,4,5}. The received power at the jth node at the
next time instant n + 1 is given by

= P>

meN,

P,(n+1) (1)

|hd—m+J‘ﬁ7

where the summation is over the nodes that decoded correctly
in the previous level. The flat fading Rayleigh channel gain
from node m in the previous level to node j in the current level
is denoted by pi,,; € p; the elements of u are independently
and identically distributed (i.i.d.) and are drawn from an
exponential distribution with the parameter oﬁ:l; B is the path
loss exponent with a usual range of 2-4. Consequently, the
recelved SNR at the jth node is given as v; = P, Jo? o5, where

2 is the variance of the noise in the receiver. Throughout the
paper, we will use the notation P, (n) as the power received at
the jth node at the nth time instant. We assume perfect timing
and frequency recovery at each receiver, and we also assume
that there is sufficient transmit synchronization between the
nodes of a level, such that all the nodes in a level transmit
to the next level at the same time [2]. In other words, the
transmissions only occur at discrete instants of time n, n+1, ...
such that the hop number and the time instants can be defined
by just one index n. By the overlapping nature of the windows,
we have the following proposition.

Proposition 1. Given M and hg, a node at a position x can
become part of several levels n, such that Vx > M — hq
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Proof: Without the loss of generality, we can assume that
the first node in the network is located at z = 1 and is a part of
level n = 1. From the given geometry, the starting location of
nth window is given by (n —1)hg+ 1, while the end location
as (n — 1)hg + M. A node at any position z in this window,
lies in between these locations, i.e.

(n—Dhg+1<z<(n—1hg+ M. 3)
The above inequality can be broken into two, such that

(n—1hg<zx-1 and x—M < (n—1)hg.

This implies, z — M < (n—1)hy < x— 1. From the necessary
condition derived in (3), we get (2). [ |

Corollary 1. Vo < M — hy, we have n =1, ..., [fﬂ

One goal of this study is to find the hop distance as a
function of the values of system parameters such as relay
transmit power and inter-node distance. However, because of
the discrete nature of the hop distance, solving the problem is
this manner is quite tedious. Hence in this paper, we follow
the inverse approach, i.e., for a given hop distance, we will
find the system parameters that generate this hop distance. We
find the parameters that give the most compact OLAs.

ITI. MODELING BY MARKOV CHAIN

At a certain time n, a node from the nth level will take part
in the next transmission, if it has decoded the data perfectly
at the current time, or it will not take part, if it did not decode
correctly or it has already decoded the data in one of the
previous levels. The decisions of all the nodes in the nth level
can be represented as X (n) = [I;(n),I2(n), ..., Irr (n)], where
I;(n) is the ternary indicator random variable for the jth node
at the nth time instant given as

0 node 7 does not decode
Li(n)=1< 1 node j decodes
2 node j has decoded at some earlier time
“)
Thus each node is represented by either 0, 1 or 2 depend-
ing upon the successful decoding of the received data. For
example, from Figure 1, we have I;(n) = Ix(n) = 2,
I3(n) = I4(n) = 1 and I5(n) = 0. We observe that
the outcomes of X (n) are ternary M-tuples, each outcome
constituting a state, and there are 3M phumber of states, which
are enumerated in decimal form {0, 1,...,3" — 1}. Let i,, be
the outcome at time n. For example, i,, = [22110] in ternary,
and 7, = 228 in decimal in Figure 1. Then we may write

P{X(n) = in|X(n—1) = in_1,. X(1) = i1} =
P{X(n) =in|X(n—1) =in_1},

where P indicates the probability measure. Equation (5) im-
plies that X (n) is a discrete-time finite-state Markov Process.
Assuming the statistics of the channel are same for all the
hops in the network, the Markov chain can be regarded as a
homogeneous one.

It can be further noticed that at any point in time, there is
a probability that the Markov chain can go into an absorbing
state, thus terminating the transmission. That can be a state
when all the nodes at a particular hop cannot decode the
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message perfectly and thus Markov chain will be in the 0
state (decimal). It can be further noticed, that any possible
combination of 0 and 2 will also make the state an absorbing
state. Since we are enumerating the states using ternary words,
the total number of states appears to be 3. But the following
claim shows that the number of transient states in the Markov
chain are less than 3.

Claim 1. Given M and hg, the possible number of states
that can be reached during transitions is N = 3M—ha y oha,
including 2M="4 number of absorbing states.

Proof: Please see the Appendix A. [ ]
Hence we consider the Markov chain, X, on a state space
AU S, where A is the set of absorbing states, and we have

ILm P{X(n)e A} /1 as. (6)

On the other hand, the states in S ( where the cardinality of
S is |S| = N — 2M~"da) make an irreducible state space, i.e.,
there is always a non-zero probability to go from any transient
state to another transient state. We will define two matrices to
describe the Markov Chain. The first, f’, is the full transition
probability matrix for all the states in the set AU.S. Each row
in P sums to one. The second matrix, P, is the submatrix of P
that is formed by striking each column and row that involves
transitions to and from the absorbing states in A. Therefore, P
is the matrix corresponding to the states in .S. It can be noticed
that the transition probability matrix P on the state space S is
not right stochastic, i.e., the row entries of P do not sum to 1
because of the killing probabilities given as

R; = 1 —ZPij,

JES

i€ S. (7

Since P is a square irreducible nonnegative matrix, then
by the Perron-Frobenius theorem [17], there exists a unique
maximum eigenvalue, p, such that the eigenvector associated
with p is unique and has strictly positive entries. For the proof,
please refer to [17] and [19]. Since P is not right stochastic,
p < 1. Also since all states in .S are transient and not strictly
self-communicating, p > 0 [15]. Overall our assumptions
imply that

0<p<l. ®)

From the theory of Markov chains [19], we know that a dis-
tribution u = (u;,% € S) is called p-invariant distribution if u
is the left eigenvector of the transition matrix P corresponding
to the eigenvalue p, i.e.

uP = pu. )

We are now interested in the limiting behavior of this
Markov chain as time proceeds. Since Vn, P {X (n) € A} > 0,
eventual killing is certain. But we are interested in finding
the distribution of the transient states, before the Kkilling
occurs. The so-called limiting distribution is called the quasi-
stationary distribution of the Markov chain, which is inde-
pendent of the initial conditions of the process. From [14]
and [15], this unique distribution is given by the p-invariant
distribution for the one step transition probability matrix of
the Markov chain on S. We can find the quasi-stationary
distribution by getting the maximum eigenvector, u of P, then
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defining u = @/ | &; as a normalized version of @ that
sums to one.

Thus we can define the unconditional probability of being
in state j at time n as

P{X(n) =j} = p"u;, (10)

We also let T = inf {n > 0 : X(n) € A} denote the end of the
survival time, i.e., the time at which killing occurs. It follows
then,

jes, n>0.

P{T >n+m|T >n}=p", (11)

while the quasi-stationary distribution of the Markov chain is
given as

lim P{X(n)=j|T > n} = uj,,

n—oo

jes. (12

We also note that the membership probability can be expressed
as
pn(m) = Zuj>
Jj€eo
where § = {X(n) € S: L, (n) =1}.

13)

IV. FORMULATION OF THE TRANSITION PROBABILITY
MATRIX

In this section, we will find the state transition matrix P for
our model, the eigenvector of which will give us the quasi-
stationary distribution. Let ¢ and j denote a pair of states of the
system such that i, j € S, where each i and j are the decimal
equivalents of the ternary words formed by the set of indicator
random variables. Now for each node m, the probability of
being able to decode at time n given that it failed to decode
in the previous level is given as

P{L,,(n) = 1|Th4m(n —1) =0} =P {ym(n) > 7}. (14)

Similarly, the probability of outage or the probability of
In(n) =0 is given as 1 — P {~,,(n) > 7} where

P () > 7} = | " o ()dy.

D~y (y) is the probability density function (PDF) of the re-
ceived SNR at the mth node. From (4), we note that a node
can have three possible states, where the initial state of a node
is always 0. A node can make the transitions shown in Figure
2. Hence each individual node is a state machine, and I,,,(n)
is a non-homogeneous Markov chain itself; the probabilities
of transition for a single node are non-zero only at certain
times. Fy; from Figure 2, i.e., the conditional probability of
success of the mth node in the nth level, is given as

Por = P{ym(n) > lln sm(n— 1) = 0; X (n — 1) € S}.
(16)

(15)

Hence the probability of perfect decoding is based on the PDF
of the received power which can be obtained as follows.

Lemma 1. If hy = M, the conditional PDF of the received
power, conditioned on which nodes transmit, is hypoexponen-
tial.

Proof: Tt can be seen that the power at a certain node
is the sum of the finite powers from the previous level
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nodes, each of which is exponentially distributed. Thus for K
independently distributed exponential random variables with
respective parameters \;, where k = 1,2, ..., K, the resulting
distribution of the sum of these random variables is known as
hypoexponential distribution [16] which is given as

K
py(y) =D Crdrexp (—Ary), (17)
k=1
where N
o =]+~ (18)
S A=

Although fooo py (y)dy = 1, it should not be thought that Cj,
are probabilities, because some of them will be negative. W
For 1 < hy < M, we consider the following lemma.

Lemma 2. For two independent exponential random variables
with parameters A\ and \ + €, the complementary CDF (tail
probability) of their sum approaches that of a Gamma distri-
bution, T'(2, \), as € — 0.

Proof: The CCDF of sums of two independent exponen-
tial random variables is given as

2
F.(x) = ZC’“ exp (—A,2); (19)
k=1

where C; = ’TA and Cy = % + 1. Thus the CCDF is given as

— 1
F,(x) = exp (—Az)A {—M + —] + exp (—Az).
€ €
(20)
Taking lim._,¢ and using L’Hospital’s rule, we get
F,(x) = exp((—Az))(1 + Az) 21

which is the CCDF of T'(2, \). [ |
With the help of these lemmas, let’s consider the following
theorem.

Theorem 1. The received power at any node in the network,
conditioned on a certain pattern of nodes transmitting in the
previous level, is always hypoexponentially distributed.

Proof: If hq = M, the resulting distribution is hypoexpo-
nential from Lemma 1. For hy < M — 1, a node will receive
powers from adjacent nodes that are either hypoexponentially
distributed (if their respective parameters are different) or they
are received as pairs of Gamma distributed variables. Thus the
power received will be sum of exponential random variables
such that there will be (groups of) two variables having same
parameters and rest having distinct parameters. But using
Lemma 2, the power received at any node is hypoexponential.

|
Let us define a set which consists of all those nodes that
decoded the data perfectly in the previous hop as N,,_; =
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Fig. 3. Sparse structure of the transition probability matrix with M = 9
and hg = 2.

{m; :Lp,(n—1)=1} Vi =1,2,..M, then from Theorem
1, Py from (16) is given as

Py = Z Cl exp (—)\;m)T),

keN @2)
n—1
where /\,(f ) is given as
m dP |hg — k +m]|”? o2
)\,(g ) = [ha | . (23)

P

To determine the possible destination states in a transition
from level n —1 to level n, it is helpful to distinguish between
two mutually exclusive sets of nodes in the nth level: 1) the
nodes that were also in the M-node window of the (n — 1)th
level, i.e., nodes that are in the hy overlap region of the two
consecutive windows, and 2) the remaining M — hd nodes
that are not in the overlag) region. We denote these two sets
of nodes as N(OnL) and Ngl 1,» respectively, where OL stands for
overlap.

Suppose node k in N (O" 2 decoded in the previous (n — 1)th
level; this would be indicated by I, (n —1) = 1. This node
will not decode again, and therefore I (n) = 2. Similarly,
if that node decoded prior to the (n — 1)th level, then
In,+x(n—1) = 2. In this case also, we must have I;(n) = 2.
Alternatively, if the node has not previously decoded, then
Ih,+k(n — 1) = 0, and Iy(n) can equal O or 1, depending
on the previous state and the channel outcomes; Iy (n) = 2
is not possible. If the node k is in the Ngl ,1, then there is no
previous level index for this node, and, again we can have
Ix(n) € {0,1} depending on the previous state and channel
outcomes, but we may not have I (n) = 2.

Let a superscript on the indicator functions show the
value of the indicator given the ith state. For example, if
i = {22110}, then ]Iél)(n) = 0.Therefore, considering the
above discussion, one-step transition probability going from
the state ¢ in level n —1 to state j in level n is always O when
either of the following conditions is true:

Condition I: 1) (n) € {0,1} and L), (n—1) € {1,2},
Condition II: I (n) =2 and I, (n—1)=0.
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Fig. 4. Arrangement of nodes on a grid with non-overlapping windows;
M =4 and hg = 4.

Thus the one step transition probability for going from state ¢
to state j is O if condition I or II holds; otherwise it is given
as

Pi= 11 | X Cmew (—/\55)7) .
keNG) \ meN(® |
(24)
H 1-— Z Cp, exp (—)\,(75)7')
keNY) meN{) |

where NY) and NS ) are the indices of those nodes which are
1 and O, respectively, in state j at level n. Thus it can be
seen that the transition probability matrix will contain a large
number of zeros. The smaller the hop distance, the larger are
the number of zeros in the matrix. Thus the resulting matrix is
highly sparse which helps in evaluating the Perron-Frobenius
eigenvalue quickly. A sample sparse structure of this matrix
that results from M = 9 and hgq = 2 is shown in Figure
3. It can be seen that there are more than 95% of zeros in
the matrix. Another interesting observation is that the matrix
entries start to repeat after 2/3 of the matrix. This is because
there is no difference in calculating transmissions if the first
node in the window is O or 2. Thus the calculations are further
reduced by a factor of 1/3.

A. A Special Case: Non-Overlapping Windows, M = hq

A special case of the transmission system is that when the
hop distance becomes equal to the window size. Thus in this
process, we constrain the clusters to be contained in a pre-
specified non-overlapping sets of nodes. Each cluster or OLA
is still opportunistic in the sense that only the nodes in the
set that can decode will be part of the OLA. An example of
the cluster to cluster transmission is given in Figure 4, where
the correctly decoding nodes are shown as filled black circles.
Since no overlap is involved, at a certain time n, each node
from the nth level will take part in the next transmission, if it
has decoded the data perfectly, or it will not take part, if it did
not decode correctly. The decisions of all the nodes in a level
can be represented as binary indicator random variables, I; (n),
taking value 1 for successful decoding and O for a failure
decoding. Hence the considered Markov chain, X, is defined
on a state space 0U.S, where S is a finite transient irreducible
state space, S = {1,2,...,2" — 1}, and 0 being the absorbing
state. The resulting sub-stochastic transition probability matrix
Pisa (2" —1)x (2™ —1) corresponding to the states in .S. For
M nodes in a level, let us define the index sets corresponding
to the ¢th state as
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NG = {1,2, ., kp} and N = {1,2, .., M}\NY,
to be the sets of those nodes which are 1 and 0, respectively, in
state ¢. Then the one step transition probability for going from
state 7 to j is the same as given in (24), where the distribution
of received power at a single node is hypoexponential from
Lemma 1 and A{™ is given as

d?(M — k +m)Po?
2 .

Alm) = (25)
It should be noticed that in this case, there are no conditions
that would lead to zero probability of transition from state ¢
to state 7 and hence the matrix is not sparse.

V. ITERATIVE APPROACH

In Section IV, we showed how to compute the quasi-
stationary distribution and the membership probabilities for
a given specification of system parameters, such as transmit
power, path loss exponent, inter-node distance, hop distance,
and for the one artificial constraint, the window width. There-
fore, an infinite variety of possible solutions exist, depend-
ing on the choices of these parameters. In this section, we
eliminate the artificial constraint and show how the design
space dimension can be further reduced through parameter
normalization and by optimizing the shape of the membership
probability function.

M is an artificial constraint because there is no real physical
need for it, however, it strongly impacts the size of the
state space and therefore the computational complexity of
finding the quasi-stationary distribution. Therefore, we would
like for M to be as small as possible without significantly
impacting the system performance results. The transmissions
from nodes at the trailing edge of a large window will have
only a small contribution to the formation of the next OLA,
because of disparate path loss (especially in a line-shaped
network), and therefore, their contribution can be neglected.
This suggests that an energy efficient solution will be a uni-
modal membership probability function with a narrow region
of support, and therefore a small M can support it. We note
that the number of nodes that relay in each hop determines
the diversity order in this finite density scenario, so the most
narrow membership function (a Kronecker delta) is not desir-
able. A final consideration is that for the broadcast application,
ideally, we want every node to decode the message, and so,
under our assumption that every node that decodes for the first
time also relays, we have that for a hop distance of hy, we
want at least hg nodes to relay in each hop.

Based on all of these considerations, we decided to choose
the solution that yields a membership probability function that
most closely resembles a square pulse of unit height that is
hq nodes wide, and takes the value of zero everywhere else
on a window that is M nodes wide. This can be interpreted
as corresponding to the most compact (i.e., shortest length)
OLA. We find M by increasing it until the one-hop success
probability (i.e., the Perron-Frobenius eigenvalue) ceases to
change significantly.

To further decrease the design space dimension, we observe
that the transition matrix in (24) depends on the product )\gf )7',
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from which we can extract the normalized parameter
70 I
=T =Far
which can be interpreted as the SNR margin from a single
transmitting node a distance d away. However, T is not the
only independent parameter, because S and hy also sepa-
rately impact the value of AR L in (23) through the factor
\ha — k +m)|°.
We now formally describe our optimization procedure. We
define our ideal membership probability function as

G(k) =u(k —a) —u(k — (a+ hqg — 1))

(26)

E>1,  @27)

where u is the unit step function and a = [@J + 1. We
can express the membership probabilities for a given level in
vector form as q = {Pm, ;s Pmas -, Pmys |» Where the values of
Dm, (1) can be found using either (13) or as

Pmy, (n) = PA{Hmk (n) = 1}
= P{ln, =11X(n) = j}P{X(n) =j} (28)

Vk={1,2,..,M} and j € S.

Then the problem of finding the best T can be formulated as

1 o
in == —|q—4q|°. 2
min Nﬂm ql| (29)

The iterative algorithm is this case is given as follows.

Algorithm 1 Iterative Method

1) Given hg, initialize the algorithm with a window size of
M = 2hy.

2) Compute the Perron-Frobenius eigenvalue, p(M), over
a range of SNR margins.

3) Increment the window size by one, and compute p(M +
1) using Step 2.

4) If |p(M +1)— p(M)| < e, for some small ¢ > 0,
M 1is the desired window size and the convergence is
achieved. Otherwise go to Step 3.

By using the iterative technique, we are able to find the
optimal window size M over a range of SNR margins. To
choose the SNR margin that gives a close approximation to
(27), minimize (29) over the SNR margin range to get the best
value of SNR margin where we achieve the minimization. This
value of T is the one that yields a given hy with maximum
probability.

VI. RESULTS AND SYSTEM PERFORMANCE

In this section, we compare the analytical results with those
of numerical simulations for different sets of parameters and
we investigate system performance as a function of certain
parameters. For the purpose of the simulations, we calculate
the received power at each node based on the previous state
(assuming an initial distribution of nodes at the first hop),
which is used to set the indicator functions as either 0,1
or 2 depending upon the threshold criterion. These indicator
functions will form the current state and the process continues.
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Fig. 5. Distribution of the states for M = 2 and hg = 2 for non-overlapping
windows.

We finally obtain the distribution of the chain by simulating
over 20,000 trials. The Perron-Frobenius eigenvalue of P has
been found using [18].

Figure 5 shows the state probabilities of the Markov chain
as a function of hop n, when both the window size and the
hop distance are assumed to be two, i.e., M = hq = 2. The
SNR margin is 12dB with a path loss exponent of 2. Thus, it
can be seen that the analytical results are quite close to that of
the simulations. It can be further noticed that as we increase
the hop number, the probability of being in a transient state
decreases, which asserts the relationship as described in (6).
Figure 6 shows the normalized mean squared error (NMSE)
between the quasi-stationary distribution assuming different
values of non overlapping window, M, where the NMSE is
defined as

2
1 Ju—al,
2M — 1 <u>2’
where 1 is the quasi-stationary distribution obtained from sim-
ulation, ||.||2 is the squared Euclidean norm and < . > is the
mean value of the vector. The figure shows that as we increase
the hop number, we approach the quasi-stationary distribution
quite fast. As we increase M, the NMSE starts to increase
and these deviations in the numerical and analytical results
can be attributed as the precision errors while calculating the
eigenvalues of larger matrices.

Figure 7 depicts the trend of eigenvalues as we increase the
SNR margin for different window sizes and a hop distance of
2. The behavior is quite obvious that increasing SNR margin
increases the probability of survival of the transmissions. It
can be further noticed that for a given value of SNR margin,
the curves start to converge as we increase the window size,
thereby indicating that after a specific window size, even if we
increase M, there is no change in the transmissions outcome
which agrees with the iterative algorithm that we discussed in
Section V.

Figure 8 shows the error surfaces for the overlapping
window case, generated by (29) for a hop distance of 2 and
different window sizes. It can be seen that the error surface
is convex that contains a minimum for a particular value of

NMSE = (30)
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Fig. 6. NMSE between the quasi-stationary distributions from analysis and
simulations.
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SNR margin, Y. It can be further noticed, that as we increase
the window size the difference between the errors becomes
smaller in the same vicinity of Y. Thus, for a window size
of 10 and a hop distance of 2, we can select the SNR margin
of around 6dB to give us desired membership probability
function. Figure 9 shows the numerical simulation result for
conditional membership probabilities of the nodes to different
levels, where the values T and M are taken from the iterative
algorithm. It can be seen that the distance between the peaks
of any two membership functions is always 2. Thus a window
size of 10 seems reasonable to get a hop distance of 2 with an
SNR margin of approximately 6dB. The sub-figure in the right
top corner shows the analytical membership function obtained
from (28) by using the quasi-stationary distribution.

Figure 10 shows the effect of increasing the path loss
exponent on the Perron eigenvalue for a hop distance of 3. It
can be noticed that for the same value of success probability,
we require more SNR margin. The convergence of the iterative
algorithm can also be seen in this figure. Also it can be noticed
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that for higher path loss exponent, the curves converge fast
as compared to smaller path loss exponent. This effect can
be attributed to the fact that if path loss exponent is higher,
adding a new node to window will not increase the success
probability as the transmissions are weaker to reach there.
The converse holds true for a small path loss exponent. From
the deployment perspective of the network, it is sometimes
desirable to determine the values of certain parameters like
transmit power of relays or distance between them to obtain
a certain quality of service (QoS), n. In other words, we are
interested in finding the probability of delivering the message
at a certain distance without having entered the absorbing
state, and we desire this probability to be at least n where
n ~ 1 ideally. Thus (11) gives us a nice upper bound on the
value of m (the number of hops) one can go with a given 7,
ie. p™ > n, which gives
Inn

m< —. 3D

Inp
Thus if the destination is far off, we require more hops,
which will require a larger value of p. Now p is a nonlinear
function of the SNR margin, Y, where a large SNR margin
corresponds to a large node degree, whereas an SNR margin
of 1 implies a node degree of exactly two in this line-
network. Figure 11 shows the relationship between required
SNR margin to reach the destination node at a particular
normalized distance for different values of hop distance. The
normalized distance, which is the true distance divided by
d, is defined as the product of A, and the number of hops
(made to reach the destination).We have taken three values of
the quality of service, 1 to show our result. We observe that
the performance of all the cooperative cases exceeds that of
non-cooperative case for a particular value of SNR margin, in
terms of the normalized distance. It can be further noticed that
the transmissions with cooperative case can reach a particular
point in two ways, i.e., keeping both the hop distance and
SNR margin small or having a higher hop distance with a
higher SNR margin, where the latter has lower latency, i.e.,
fewer hops, and higher QoS, 7. The results are also plotted
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for a hop distance of 3.

for a higher path loss exponent, i.e., 5 = 3. However, from
Figure 10 we know that a high SNR margin is required to get
the same value of success probability. Thus we observe that if
we increase the path loss exponent and also the SNR margin,
we get results that are close to the case of small path loss
exponent with small SNR margin. The non-cooperative results
show that we can reach a small distance with a considerably
small success probability when we use the same SNR margin
for the high path loss exponent.

Figure 11 also supports our expectation that fixing the
transmit power, while lowering the data rate, will increase
the range that can be obtained for a given packet delivery
ratio (PDR). Lowering the data rate implies lowering the
decoding threshold, which implies from (26) a higher SNR
margin. Figure 11 shows that for 8 = 2, lowering the decoding
threshold by 3.4dB (i.e., increasing T from 6 to 9.4) increases
the distances by nearly a factor of 7 for a PDR of 90%
(n=0.9).

From the broadcast perspective, another important param-
eter is to find the fraction of nodes that have decoded in the
network. If we assume that the Markov chain is in the quasi-
stationary state, and has not entered the absorbing state over a
linear network of interest, then the fraction of decoded nodes
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in the network is the same as the fraction of the nodes in any
one hop. From Figure 9, we can see that we do not exactly get
a rectangular membership function, which implies that not all
the nodes in the network may have decoded the data. Let Ny
be a random variable that denotes the number of forwarding
nodes such that ng, are the realizations of this variable where
j = 1,2,...|S]. Hence the average number of the nodes that
have decoded the data is given as

S|

E(Ny) = Z N, (32)
j=1

where ng, is the number of DF nodes in the jth state and
u; is the quasi-stationary probability of that state. Hence for
the cases that are described in Figure 11, the results are
summarized in Table I. It can be seen that as we increase
the hop distance (and the SNR margin consequently), we get
more nodes that are able to decode in a given hop.

VII. CONCLUSION AND RECOMMENDATIONS

In this paper, we have shown that a one-dimensional multi-
hop network that does opportunistic large array transmission
can be modeled as a Markov chain in discrete time and we
derived the sub-stochastic matrix of this chain. The Perron-
Frobenius eigenvalue and the corresponding eigenvector of
this matrix helps in determining different parameters for
achieving better performance in delivering the message to a
destination. As an extension to this work, it is recommended
to obtain a framework where the nodes are aligned on a
two dimensional grid, which will mimic a strip shaped OLA
network. The objective in this case can be to find the best path
in the network as done in [20] and [21]. The node locations in
this study are kept fixed, it is again an interesting situation to
study the effects of path loss if the node locations are random
on a one-dimensional or two-dimensional network.
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TABLE I
FRACTION OF DF NODES FOR VARIOUS HOP DISTANCES
| Hop distance, hq [ 2 [ 3 1 4 ]
% of nodes decoded, 5 = 2 92.30 | 94.67 | 97.02
% of nodes decoded, 5 = 3 93.54 | 9598 | 98.21
APPENDIX A

PROOF OF CLAIM 1

Let N = 3™, where N is the possible number of states for
a window size of M using ternary M-tuples. By construction,
the window overlap size is M — hg, thus we split a window
such that

M=M—hg+ hyg (33)
—_—— =~

overlap shift

The shift part is always receiving transmissions from the
previous window, thus the nodes contained in shift can either
go to 0 or 1 but never 2. Thus the possible combinations
in shift are those of 0 and 1 which make a total of 2/,
The overlap part can contain any combination and thus is
3M~ha Using the multiplication rule of independent events,
the effective states are given as

N = 3M—ha y gha, (34)

If all the elements of the window form any combination of 0
and 2, the system will be in absorbing state. The effect of 2
in the shift has already been taken into account from above
equation. Thus we want the additional combination of 0 and
2 to be excluded from the overlap part which makes a total
of 2M—ha, |
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